13 research outputs found

    Hamiltonian submanifolds of regular polytopes

    Full text link
    We investigate polyhedral 2k2k-manifolds as subcomplexes of the boundary complex of a regular polytope. We call such a subcomplex {\it kk-Hamiltonian} if it contains the full kk-skeleton of the polytope. Since the case of the cube is well known and since the case of a simplex was also previously studied (these are so-called {\it super-neighborly triangulations}) we focus on the case of the cross polytope and the sporadic regular 4-polytopes. By our results the existence of 1-Hamiltonian surfaces is now decided for all regular polytopes. Furthermore we investigate 2-Hamiltonian 4-manifolds in the dd-dimensional cross polytope. These are the "regular cases" satisfying equality in Sparla's inequality. In particular, we present a new example with 16 vertices which is highly symmetric with an automorphism group of order 128. Topologically it is homeomorphic to a connected sum of 7 copies of S2×S2S^2 \times S^2. By this example all regular cases of nn vertices with n<20n < 20 or, equivalently, all cases of regular dd-polytopes with d9d\leq 9 are now decided.Comment: 26 pages, 4 figure

    Duality properties of indicatrices of knots

    Full text link
    The bridge index and superbridge index of a knot are important invariants in knot theory. We define the bridge map of a knot conformation, which is closely related to these two invariants, and interpret it in terms of the tangent indicatrix of the knot conformation. Using the concepts of dual and derivative curves of spherical curves as introduced by Arnold, we show that the graph of the bridge map is the union of the binormal indicatrix, its antipodal curve, and some number of great circles. Similarly, we define the inflection map of a knot conformation, interpret it in terms of the binormal indicatrix, and express its graph in terms of the tangent indicatrix. This duality relationship is also studied for another dual pair of curves, the normal and Darboux indicatrices of a knot conformation. The analogous concepts are defined and results are derived for stick knots.Comment: 22 pages, 9 figure

    Combinatorial 3-manifolds with transitive cyclic symmetry

    Full text link
    In this article we give combinatorial criteria to decide whether a transitive cyclic combinatorial d-manifold can be generalized to an infinite family of such complexes, together with an explicit construction in the case that such a family exists. In addition, we substantially extend the classification of combinatorial 3-manifolds with transitive cyclic symmetry up to 22 vertices. Finally, a combination of these results is used to describe new infinite families of transitive cyclic combinatorial manifolds and in particular a family of neighborly combinatorial lens spaces of infinitely many distinct topological types.Comment: 24 pages, 5 figures. Journal-ref: Discrete and Computational Geometry, 51(2):394-426, 201

    On tight immersions of maximal codimension

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46589/1/222_2005_Article_BF01404629.pd

    Convex Partitions with 2-Edge Connected Dual Graphs

    No full text
    It is shown that for every finite set of disjoint convex polygonal obstacles in the plane, with a total of n vertices, the free space around the obstacles can be partitioned into open convex cells whose dual graph (defined below) is 2-edge connected. Intuitively, every edge of the dual graph corresponds to a pair of adjacent cells that are both incident to the same vertex. Aichholzer et al. recently conjectured that given an even number of line-segment obstacles, one can construct a convex partition by successively extending the segments along their supporting lines such that the dual graph is the union of two edge-disjoint spanning trees. Here we present a counterexample to this conjecture, which consists of 16 disjoint line segments, such that the dual graph of any convex partition constructed by this method has a bridge edge, and thus the dual graph cannot be partitioned into two spanning trees. Counterexamples of arbitrarily larger sizes can be constructed similarly. Questions about the dual graph of a convex partition are motivated by the still unresolved conjecture about disjoint compatible geometric matchings by Aichholzer et al.. It has application in the design of fault-tolerant wireless networks in the presence of obstacles (e.g. tall buildings in a city)

    Computing Elevation Maxima by Searching the Gauss Sphere ⋆

    No full text
    Abstract. The elevation function on a smoothly embedded 2-manifold in R 3 reflects the multiscale topography of cavities and protrusions as local maxima. The function has been useful in identifying coarse docking configurations for protein pairs. Transporting the concept from the smooth to the piecewise linear category, this paper describes an algorithm for finding all local maxima. While its worst-case running time is the same as of the algorithm used in prior work, its performance in practice is orders of magnitudes superior. We cast light on this improvement by relating the running time to the total absolute Gaussian curvature of the 2-manifold.
    corecore